
 

 1 

「大阪大学大学院人間科学研究科紀要」第 26号  
2000年 3月所収（pp. 211 - 228） 

 
 
 

 

 

 

 

A Formal Theory for Pictorial Representations 

 

 

 

 

Yasuo NAKAYAMA



 

 2 

A Formal Theory for Pictorial Representations 
 

Yasuo Nakayama 
 

  

The aim of this paper is to propose a formal theory for pictorial representations. In our daily 

life we talk about points, lines, and areas in a map.  To deal with these objects, it is 

convenient to use a mereological language; this language is called Natural Representation 

Language (NRL). Pictorial representations are also objects in the world; they differ from 

usual objects only through their representing character. We can denote, therefore, a pictorial 

representation by using a name and define a function from it in a part of the world. This 

function, called a projective function, describes how a pictorial representation corresponds 

to a part of the world. By giving certain constraints on projective functions we can express 

the intended use of a pictorial representation. Furthermore, combinations of projective 

functions are defined. This theory can be used to analyze aspect maps. In NRL, both 

representing and represented layers can be described. This theory clarifies semantic relations 

of pictorial representations and helps to analyze the indeterminacy problem. 

 

1  Introduction 

Today, there is no satisfactory theory for pictorial representations. Pratt (1993) attempts to 

define semantics for maps, but his undertaking is overly influenced by the traditional 

semantics. Pratt understands a formal semantics for a language as a theory that gives the truth 

conditions for expressions in that language. He proposes a semantics for maps according to 

this concept of semantics. However, it is odd to speak of the truth of maps. Normally, we ask 

only whether a map is appropriate for certain use. There are also different methods for 

projection of the reality. The answer for the question, which projection should be used for a 

map, depends on its intended use. Exact projection is not always needed and in some cases 

not desirable.  

In this paper, I would like to propose a new theory for pictorial representations. This 

theory is based on Natural Representation Language (NRL) proposed by Nakayama (1999). 

NRL is a mereological language and can treat not only points, but also lines and areas as 

objects. We consider parts of a pictorial representation as objects that represent a part of the 

reality. In this paper, an interpretation of a pictorial representation A for B is explicated as an 

injection from parts of A in parts of B, where this injection preserves the part-whole relation. 

This injection is called a projective function. Usual maps and sketches also contain symbolic 



 

 3 

expressions that can be easily interpreted. Interpretation of symbols are considered as 

constraints on proper projective functions that are intended as correct readings by the designer 

of the given pictorial representation. 

Projective functions are described as functions within the object language. Therefore, 

characterizations about them can be also given within it; we can talk about representing 

objects, represented objects, and arts of representation within this object language.  

 

2  Pictorial Objects and Mereological Objects 

What are elements of pictorial representations? We talk about points, lines, and areas in a map. 

This means, not only points but also lines and areas are referred to as objects. To deal with 

this ontology, it is convenient to use a mereological system. Recently, mereological ontology 

has been studied in context of representation of plural and mass objects (cf. Lønning (1997)). 

Link (1998) describes a comprehensive picture of a mereological system based on an 

algebraic system. Nakayama (1999) criticizes Link’s notion of absolute atomic objects and 

proposes an extensional mereological theory in which individual objects are individuated by 

use of sortal predicates. When pictorial objects on a map are given, we can construct 

mereological sums of them. Lines and areas can be constructed in this way as mereological 

sums.  

Nakayama (1999) defines a mereological theory based on Boolean algebra (cf. Appendix). 

Boolean algebra entails functions ∩,  ∪, NON, and objects φ and U. Inclusion ⊂ can 

be defined through the stipulation x⊂y ≡ x∩y = x. The part-whole relation ⊂p is defined 

through x⊂p y ≡ (x⊂y ∧ x≠φ). The name sum(u)[ψ(u)] is defined as a name for the 

maximal object u that satisfies the condition ψ(u); sum(u)[ψ(u)] is called mereological sum 

that satisfies ψ. 

Sortal predicates are predicates that can be used for individuation of objects; “building”, 

“station”, “lake”, and “city” are examples of sortal predicates. By using a sortal predicate F, 

relation symbols “being a F-part of” (⊂F), “being a F-atomic object” (atomF), and “being a 

F-atomic-part of” (εF) can be defined as follows: 

 

x⊂F  y ≡ (F(x) ∧ F(y) ∧ x⊂y) 

(x is a F-part of y  iff  x is F, y is F, and x is included in y.) 

atomF (x) ≡ (F(x) ∧ ∀u (u⊂F x → u = x)) 

(x is a F-atomic object  iff  x is F and contains no smaller F-part in it.) 

xεF y ≡ (atomF (x) ∧ x⊂F y) 

(x is a F-atomic-part of y  iff  x is a F-atomic object and x is a F-part of y.) 
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⊂F and εF express two well known notions in AI-research. ⊂F corresponds to IS-A 

relation and εF corresponds to INSTANCE-OF relation, where these two notions are 

relativized by a sortal predicate. This relativized IS-A relation might be useful for 

combination of different domain knowledge in order to avoid inconsistency that might be 

generated through a combination. Furthermore, the part-whole relation ⊂p corresponds to the 

PART-OF relation in semantic networks.  

The notion of cardinality of objects can be recursively defined (cf. Appendix). When a 

sortal predicate is applicable to objects, they become countable with respect to the predicate. 

cdF(x) = n means, the cardinality of x with respect to F is n, where F is a sortal predicate. By 

using this notion, we can express a statement like “there are 5 schools represented on this 

map” (cf. Section 3).  

Based on these theories, Nakayama (1999) develops a language called Natural 

Representation Language (NRL) in order to formally express meanings of sentences with 

plural and mass terms and in order to deal with plural and mass anaphora. In NRL, quantifiers, 

such as all, most, more than n% of, can be directly expressed and Nakayama (1998a) proposes 

to extend NRL to a system of hypothetical reasoning. 

It is easy to show that ⊂p is a partial ordering except φ (cf. Nakayama (1999)). 

Because  ⊂p is transitive, we can derive “Hamburg is a city in Europe” from “Hamburg is a 

city in Germany”, provided that we know that Germany is a part of Europe:  

 

Germany ⊂ p Europe →  (Hamburg ε city CITY ∧  Hamburg ⊂ p Germany → 

Hamburg εcity CITY ∧ Hamburg ⊂p Europe). 

 

CITY is used here as a name for the sum of all cities. 

In this paper, it will be shown that NRL is useful not only for semantic description of 

sentences in natural languages (cf. Nakayama (1999)) but also for semantic description of 

pictorial representations. As we will see later, NRL can also be used to combine visual and 

verbal information (cf. section 5). 

 

3  Projective Functions for Pictorial Representations 
Typical pictorial representations are maps and sketches. Usual maps and sketches can be seen 

as objects in the world. Their elements can be described like other objects in the world; they 

differ from usual objects only by their representing features. I denote, therefore, maps and 

sketches by using terms and use functions to describe their representing character.  

I use a function to describe a relation between a map and the reality; this function from a 

map in the world is called projective function. I define, at first, relation symbols function and 
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projective-function: 

 

DEFINITION 1  

graph(G, m) ≡ (∀x (x⊂p m →∃! y G(x, y)) ∧∀x (¬x⊂p m → ¬∃y G(x, y))),  

where ∃! yψ(y) means there is exactly one y such that ψ(y). 

(G is a graph for m  iff  G correlates any parts of m to objects in the reality.) 

function(f, m), if there is a graph G for m such that ∀x∀y (x⊂p m → (y = f(x) ≡ G(x, 

y))), where values of f are undefined for objects outside of m. This function f is 

called the function generated by the graph G. 

(Instead of a graph, we will use a partial function that exactly corresponds to the graph.) 

projective-function(f, m) ≡  

(function(f, m) ∧∀x1∀x2 (x1⊂p m ∧ x2⊂p m → (x1≠x2 → f(x1)≠f(x2))) 

∧ ∀x (x⊂p m → f(x)≠φ) ∧ f(x1∩x2) = f(x1)∩f(x2) ∧ f(x1∪x2) = f(x1)∪

f(x2)). 

(f is a projective function for m  iff  f is an injection from parts of m in parts of the world 

and f preserves the operations ∩ and ∪.) 

 

As we will see later, a projective function is an injection that preserves the part-whole 

relation. Because of this property of maps, we can freely combine information from a map 

and real experience; we obtain an inverse function that projects objects of a part of the world 

onto a map and preserves the part-whole relation in the reality. To localize a current place in a 

map, we usually try to map information from the reality onto the map. For example, when I 

see a building of a large bank in front of me, I try to find the name of this bank on a city map 

to orient myself. 

We can describe the world by constructing a map, but we can also describe contents of a 

map. To do the latter, we write names of objects onto a map. For example, when an area c1 on 

a map m1 has the name “Hamburg”, this name can be written onto the map. The intended 

association between an area and the name is expressed by the formula associated(c1, 

Hamburg, m1). We can describe properties of a map by describing constraints on this function. 

In our example, we should have f1(c1) = Hamburg, where f1 is a function from the map m1 into 

the real world. This example shows a method to give constraints on projective functions. 

By giving constraints on projective functions, they can be specified. Some of these 

constraints are formally definable. 

 

DEFINITION 2 

We presuppose here an axiomatic system that defines distance of two points in space. 
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standard-name(f, m), if for all names N in the map m, it holds: ∀x (associated(x, N, m) → 

f(x) = N).  

(standard-name(f, m) means a person who follows the instruction given by f will use all 

names in the map m in the same way as in natural language.) 

standard-attribution(f, m), if for all class names C in the map m, it holds: ∀x (associated(x, 

C, m) → f(x)εF C).  

(standard-attribution(f, m) means a person who follows the instruction given by f will use 

all class names in the map m in the same way as in natural language.) 

standard-icon(f, m), if for all icons δ in the map m that are associated with the class C, it 

holds: ∀x (associated(x,δ, m) ∧ icon-for(δ, C) → f(x)εF C). 

(standard-icon (f, m) means a person who follows the instruction given by f will use all 

icons in the map m as usual.) 

1/n-contaction(f, m) ≡ ∀x1 ∀x2 (x1⊂p m ∧ x2⊂p m → dis(f(x1), f(x2)) = n×dis(x1, 

x2), where dis is a function of the distance between centers of two regions.  

(1/n-contaction(f, m) means a person who follows the instruction given by f will multiply 

the distance between areas on m by n to get their right distance in the reality.) 

proportion-preserving(f, m) ≡ ∃u (1/u-contaction(f, m)). 

(proportion-preserving(f, m) means there is a real number u such that 1/u-contaction(f, m). 

When this condition holds, the proportion of the reality is preserved in m.) 

length-preserving(f, m) ≡ 1/1-contaction(f, m). 

[r%]-fuzzy-proportion(f, m) ≡ ∃u∀x1∀x2 (x1⊂p m ∧ x2⊂p m → u×(1 - r /100)×

dis(x1, x2) ＜ dis(f(x1), f(x2)) ∧ dis(f(x1), f(x2)) ＜ u×(1 + r /100)×dis(x1, 

x2)). 

([r%]-fuzzy-proportion(f, m) means the distortion of proportion on m is maintained within 

the limit of r%. This characterization becomes important for schematic maps. In schematic 

maps, proportion is slightly skewed but this distortion should be limited so that it is still 

possible to recognize the shapes of original objects.) 

 

Sometimes we want to characterize partial features of a pictorial representation. This 

partial characterization is especially important for schematic maps. 

 

DEFINITION 3 

complete(f, m, C) ≡∀x (x⊂p m ∧ f(x)εF C → associated(x, C, m)). 

(complete(f, m, C) means, in m, all objects of the class C in the m-part of the reality are 

associated with the name of C, where m-part of the reality denotes the part of the reality 

described by m.) 
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proportion-preserving*(f, m, C) ≡∃u∀x1∀x2 (associated(x1, C, m) ∧ associated(x2, C, 

m) → dis(f(x1), f(x2)) = u×dis(x1, x2)).  

(proportion-preserving*(f, m, C) means, in m, proportion between objects associated with 

the name of C is preserved.) 

orientation-preserving(f, m, C) ≡ proportion-preserving*(f, m, C). 

[r%]-fuzzy-proportion*(f, m, C) ≡∃u∀x1∀x2 (associated(x1, C, m) ∧ associated(x2, C, 

m) → (u×(1 - r /100)×dis(x1, x2) ＜ dis(f(x1), f(x2)) ∧ dis(f(x1), f(x2)) ＜ u

×(1＋r /100)×dis(x1, x2)). 

 

It is easy to prove the following proposition: 

 

PROPOSITION 1  

The following statements straightforwardly follow from definition 1 and 2. 

a) For any name N and any class C on the map m, standard-name(f, m) ∧ 

standard-attribution(f, m) → (∃x (associated(x, N, m) ∧ associated(x, C, m)) → N

εF C). 

(If f for m interprets names and class names in conformity with the standard, then it 

holds: if there is a graphic object in m that is associated with both the object N and the 

class C, then N is a C.) 

b) For any name N and any class C on the map m, standard-name(f, m) ∧ standard-icon(f, 

m) → (∃x (associated(x, N, m) ∧ associated(x,δ, m) ∧ icon-for(δ, C)) → NεF 

C). 

(If f for m interprets names and icons in conformity with the standard, then it holds: if 

there is a graphic object in m that is associated with both the object N and the icon δ 

for the class C, then N is a C.) 

c) projective-function(f, m) →∀x1∀x2 (x2⊂p m → (x1⊂p x2 → f(x1)⊂p f(x2))). 

(If f is a projective function for m, then, for all parts of m, f preserves the part-whole 

relation.)  

d) projective-function(f, m) →∀x1∀x2 (x1 = x2 ≡ f(x1) = f(x2)).  

(If f is a projective function for m, then f is an injection from m in a part of the world.) 

Proof  (a), (b), and (d) are obvious. I will only prove the proposition (c). Suppose 

projective-function(f, m) ∧ x2⊂p m ∧ x1⊂p x2. Then, it suffices to show f(x1)⊂p f(x2). 

From the definition of ⊂p, (x1⊂p x2 ≡ (x1≠φ ∧ x1∩x2 = x1)) ∧ (f(x1)⊂p f(x2) ≡ 

(f(x1) ≠φ ∧ f(x1)∩f(x2) = f(x1))). From the definition of projective-function(f, m), f(x1)

≠φ∧ f(x1)∩f(x2) = f(x1∩x2). From x1∩x2 = x1, f(x1)∩f(x2) = f(x1). Hence, f(x1)⊂p f(x2).  

┤ 
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The first two statements show that simple subject-predicate statements are expressible on a 

map. For example, by using an icon for school and by writing a name of a school near the 

icon, we can express that the referred building is a school. Now, a statement such as “there are 

5 schools represented on this map m” can be expressed in NRL:  

 

∃x (x⊂p m ∧ associated(x,δ, m) ∧ icon-for(δ, SCHOOL) ∧ cdbuilding(f(x)) = 5).  

(There is a part of m that represent a sum of five schools. SCHOOL denotes here the sum 

of all schools in the world. f(x) denotes a mereological object in the reality that is 

represented in m by the area x). 

 

In this formula, the statement associated(x,δ, m) has a collective reading. See Nakayama 

(1999) for a detailed treatment of collective and distributive reading. 

The last two statements in proposition 1 state that a projective function is an injection that 

preserves the part-whole-relation. 

Particular properties of the projective function can be easily defined in case by case. Pratt 

(1993) used an example of a map consisting of dark and light parts, where dark parts 

represent water and light parts represent land. Let m be the map shown in fig.1 and f be a 

proper projective function for m. It is, then, easy to characterize f, so that f expresses the 

intended interpretation of m; we can require the following property from f:  

 

∀x (x⊂p m ∧ dark(x) → f(x)⊂p WATER) ∧ ∀x (x⊂p m ∧ light(x) → f(x)⊂p 

LAND).  

(Any parts of m that have a dark color represent water and any parts of m that have a light 

color represent land.) 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  A map with two lakes 
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Actually, to interpret this map, Pratt (1993) uses no mereological concept and uses a 

function from points on a map into the reality without giving any special constraint on the 

function. However, parks and lakes on a map are normally considered as individual objects, as 

this can be observed in the fact that some parks and lakes have a name. We need, therefore, 

mereological ontology with relativization by sortal predicates in order to properly describe a 

map. Furthermore, the intended function is a projective function that preserves the part-whole 

relation. 

I call the theory presented in this section the extended NRL or ENRL. 

 

4  What are Representations? 

Palmer (1978) characterizes a representation system as a system that has the following five 

aspects: 

 

a) what the represented world is; 

b) what the representing world is; 

c) what aspects of the represented world are being modeled; 

d) what aspects of the representing world are doing the modeling; 

e) what are the correspondences between the two worlds. 

 

In this sense, ENRL characterizes pictorial representations as representation systems. 

According to ENRL, a pictorial representation m is a representation whose function f satisfies 

the condition projective-function(f, m). Palmer’s five aspects can now be explicated as 

follows: 

 

a) The represented world is the intended model. 

b) The representing world is a pictorial representation m. 

c) The aspects of the represented world that are being modeled are specified by giving 

constraints on possible projective functions. Examples for these constraints are defined 

in definition 2; they are proportion-preserving, standard-name, etc. 

d) When only some parts of a pictorial representation are used for modeling the world, 

these parts can be specified by using conditions in the form R(f, m, C), where m stands 

for the pictorial representation, f denotes the intended projective function, and C is a 

class of objects that are described in m. Examples for R are defined in definition 3; they 

are complete, proportion-preserving*, etc. 

e) The correspondences between the two worlds is expressed by a projective function f. 
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In summary: a part of the real world is represented by a pictorial representation m, where 

the intended projective function f for m shows how the world is represented by m and how to 

use m. 

 

5  Combining Information from Pictorial Representations with Information 
from Verbal Expressions 

Within ENRL, it is easy to combine information given by different media. In this section, it is 

discussed how to combine information from a pictorial representation with information given 

by verbal expressions. 

Within ENRL, verbal information about the world is directly expressed, whereas 

information contained in a pictorial representation is expressed by using a projective function. 

A projective function is a partial function whose domain consists of parts of a pictorial 

representation. Some of them are characterized by certain properties or identified by using 

names, and they stand in certain spatial relations to each other. A proper projective function 

for a pictorial representation should be characterized in order to use it correctly. Relations 

between pictorial representations and projective functions give the characterization for a 

correct use. These characterizing relations are relations defined in section 3, like 

standard-attribution, proportion-preserving, etc.  

Within ENRL, information from a pictorial representation and information from verbal 

expressions can be straightforwardly combined. Tappe and Habel (1998) point out that there 

are different representation layers, i.e. the layer of graphical entities and the layer of 

real-world entities. By using a natural language, we can talk about both of the layers. Think 

about the situation in which a man points to a line l1 on the map m and says "This long line 

represents a railway. There is a station on this line. You can see a church near the station. 

Peter’s house lies next to this church." In this talk, two representation layers are mixed up. 

This talk can be translated into ENRL as follows, where f is a proper projective function for 

m:  

 

(l1εfigure LINE ∧ f(l1)⊂p RAILWAY ∧ on(d1, l1, m) ∧ f(d1)εbuilding STATION ∧ 

associated(d2, †, m) ∧ icon-for(†, CHURCH) ∧ near(d2, d1) ∧ d3εbuilding HOUSE 

∧ d3 belong to Peter ∧ next-to(d3, f(d2))). 

(l1 is a line, l1 represents a part of the whole railway, d1 is on l1 (in m), d1 represents a 

station, d2 is associated with the icon † for a church, d2 is placed near d1, d3 is a house that 

belongs to Peter, and d3 is located next to the church represented by d2.) 
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Here, l1, d1, d2, and d3 are Skolem constant symbols. Nakayama (1999) uses Skolem 

symbols to express anaphoric relations. Detailed explanations can be found there. 

We can combine information from verbal expressions and information from the map m. 

Suppose that there is a school with the name N that is 2cm away from the church mentioned 

before. Suppose that 1/100000-contaction(f, m) holds. This means that the distance of the 

school and the church is 2km. This is expressed within ENRL as follows: 

 

1/100000-contaction(f, m) → (d4⊂p m ∧ associated (d4, N, m) ∧ d5 = f(d4) ∧ d5 = N 

∧ d5εbuilding SCHOOL → (dis(d4, d2) = 2cm → dis(d5, f(d2)) = 2km)). 

(When the scale of m is 1/100000 and when d4 represents a school with the name N, then 

the distance between the school and the church mentioned before is 2km, because their 

distance on m is 2cm.) 

 

These examples demonstrate that combination of information from a pictorial 

representation and information from verbal expressions is straightforward within ENRL. 

 

6  Combination of Pictorial Representations 

In this section, we define how to combine different pictorial representations. There are two 

ways of combining functions; they are unification and composition. 

 

DEFINITION 4 

Let G1 be the graph which generates the projective function f1 for m1. Let G2 be the graph 

that generates the projective function f2 for m2. 

a) union(G, f1, f2) ≡∀x∀y (G(x, y) ≡ (G1(x, y) ∨ G2(x, y))). 

 (G is the union of f1 and f2  iff  G is the union of G1 and G2.) 

b) united-graph(G, f1, f2) ≡ (union(G, f1, f2) ∧ ∀x (x⊂p (m1∩m2) → f1(x) = f2(x))). 

(G is the united graph of f1 and f2  iff  G is the union of f1 and f2, and G is a graph for 

m1∪m2. ) 

c) If united-graph(G, f1, f2) holds, then the function generated by G is denoted by [f1∪f2] 

and called the unification of f1 and f2. 

d) composition(G, f1, f2) ≡∀x∀y (G(x, y) ≡ (x⊂p m1 ∧ f1(x)⊂p m2 ∧ y = f2(f1(x)))). 

(G is the composition of f1 and f2  iff  G correlates every part x of m1 to the object 

f2(f1(x)).) 

e) The function generated by the graph G that is the composition of f1 and f2 is denoted by 

[f2* f1] and called the composition of f1 and f2. 
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Composition and unification of functions can be combined, if the conditions for them 

described in definition 4 are satisfied. Thus we can construct a complex combination like [f1

∪[f2*f3]∪f2∪f4]]]. We can use many pictorial representations to interpret the reality, if they 

are altogether consistent. It is also our usual praxis to use different maps and sketches in order 

to go to an unknown place.  

In some cases, it is possible to construct a virtual map by combining different maps in a 

proper way. This construction is easy, when all maps that should be combined overlap with 

each other and their proper projective functions are proportion preserving. Let us think about 

such an example. Suppose that there are maps m1 and m2 with projective functions f1 and f2. 

Suppose that f1 and f2 satisfy 1/n-contaction(f1, m1), 1/k-contaction(f2, m2), and f1(m1)∩f2(m2) 

≠φ. In this case, we can define a virtual map m3 with m3 = g1(m1)∪g2(m2), f3 = [f1*g1
-1]∪

[f2*g2
-1], and ∀x (x⊂p (g1(m1)∩g2(m2)) ≡ f3(x)⊂p (f1(x)∩f2(x))), where gi

-1 means the 

inverse function of gi. These conditions are needed to correctly correlate m1 and m2. Now, we 

can construct a virtual map with the scale (1: r), when we give the constraints 

n/r-contraction(g1, m1) and k/r-contraction(g2, m2) on g1 and g2. It holds then: 

1/r-contaction(f3, m3), r/n-contraction(g1
-1, g1(m1)), and r/k-contraction(g2

-1, g2(m2)). In this 

way, we can construct a proportion preserving virtual map from two proportion preserving 

maps. 

 

7  Aspect Maps 
According to Brendt et al (1998), an aspect map is a spatial organization structure that 

represents one or more aspects of geographic entities. To represent a part of the world, 

different aspects of it can be extracted from the reality. An example of aspect maps is a 

transportation network map that reconstructs only some aspects of the original city map. In 

this section, aspect maps will be formally characterized by using ENRL. 

There are some aspects that are crucial for transportation network maps. Their most 

important feature is the completeness of lines and stations. It is formally expressed as 

complete(f, m, LINE) ∧ complete(f, m, STATION). The formula complete(f, m, LINE) ∧ 

complete(f, m, STATION) means, all lines and stations in the m-part of the reality are 

represented in m. The completeness of stations is a nice property. We would not trust a 

transportation network map that misses several stations. 

Pratt (1993) proposes to use a default representation, because he thinks the absence of 

symbols can convey information. This problem is closely related with our usual expectation 

from a map that it represents all objects of some classes in the described area. By using ENRL, 

we can express when we should use a default reasoning. If it holds complete(f, m, C), then we 

can say that there is no C, where no symbol for C stands. If complete(f, m, C) does not hold 
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but we know that there are more places with non-C than with C in the m-part of the reality, 

then it is appropriate to infer by default that there is probably no C-object where no symbol 

for C stands. However, this deals with a practical decision and it is not a genuine problem of 

semantics. 

For transportation network maps, it is crucial that stations are located on a line according 

to the original order. These maps should be so constructed that there are projective functions 

that preserve all station orderings of all lines described in them. As Brendt et al correctly 

pointed out, the exact locations of stations and courses shall be omitted for reasons of map 

readability. However, locations should be roughly right, so that correlation between the map 

and the reality remains readable. We can express this condition of rough correctness, for 

example, by the formula [10%]-fuzzy-proportion*(f, m, LINE) ∧ [10%]-fuzzy-proportion*(f, 

m, STATION).  

In the last section, we have already discussed how to combine two projective functions, 

when they are proportion preserving. However, many aspect maps are not proportion 

preserving. Let us discuss the combination of aspect maps more closely. When two aspect 

maps, m1 and m2, represent the same part of the reality, then it holds: f1(m1) = f2(m2). By using 

the method explained in section 7, a virtual map m3 can be constructed from m1 and m2, and it 

holds: m3 = g1(m1)∪g2(m2), f3 = [f1*g1
-1]∪[f2*g2

-1]. Hence, m3 = g1(m1) = g2(m2), f3 = 

[f1*g1
-1] = [f2*g2

-1]. In many cases, to preserve f1‘s property, g1
-1 has to have the same 

property. For example, to preserve f1‘s property of orientation preserving, g1
-1 has to be 

orientation preserving, i.e. g1 has to be orientation preserving. However, when we accept 

slight distortion of the preservation, we can often construct a virtual map with nice properties. 

For example, when we accept properties [10%]-fuzzy-proportion(g1, m1) and 

[10%]-fuzzy-proportion(g2, m2), it might be possible that f3 newly obtains the property of 

proportion preserving without loss of any properties of f1 and f2. The construction problem of 

a virtual map from existing aspect maps can be seen as a problem of constraint satisfaction. 

That is a problem to find a projective function from a virtual map to the reality and projective 

functions from the existing aspect maps to the virtual map such that they satisfy all relevant 

properties of the existing aspect maps and all desirable properties for the virtual map.  

 

8  The Indeterminacy Problem 

To properly use a pictorial representation m, it is crucial to know what are presupposed as 

proper projective functions for m. Ignorance of this knowledge can cause a misuse of this 

representation system. Let m be a pictorial representation that is not proportion preserving. If 

we misunderstand this pictorial representation as proportion preserving, we can fail to 

estimate a right distance between two places described on m. To understand how to use a 
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pictorial representation, you have to know properties of its proper projective functions. 

This consideration helps to clarify the indeterminacy problem discussed in Habel (1998). 

According to Habel, the indeterminacy problem deals with the claim that pictorial 

representations are completely determined and committed to details, whereas propositional 

representations can be underdetermined. As Habel points out, even if a pictorial description is 

completely determined, there are different interpretation possibilities of it. Habel explains 

these different interpretation possibilities through the possibilities of taking different 

axiomatized geometric systems. It is, however, more general and natural to think that these 

interpretation possibilities are given by the possibilities of taking different proper projective 

functions for the same pictorial representation. 

A pictorial representation has its own structure, but usually not all of its structural 

properties are used for representation of the world. Maps and sketches differ in the relevance 

of their details. For example, a typical map is proportion preserving and it has many classes of 

objects that are exhaustively mentioned with respect to the described area, but most sketches 

are not proportion preserving and it has few classes of objects that are exhaustively mentioned 

with respect to the described area. When two points are connected on a sketch, this 

connection might represent a property in the reality but neither distance nor orientation nor 

length of the line will play a representational role. Normally, sketches represent only 

restricted parts of the reality. This consideration can be summarized as follows: 

 

a) A proper projective function f of a typical map m fulfills the following properties: 

proportion-preserving(f, m) ∧ standard-name(f, m) ∧ standard-attribution(f, m) 

∧ standard-icon(f, m), and  

there are many classes C such that complete(f, m, C). 

b) A proper projective function f of a typical sketch m fulfills the following properties: 

standard-name(f, m) ∧ standard-attribution(f, m), and  

there is a part m* of m and some classes C such that m*⊂p m ∧ complete(f, m*, C). 

 

When you draw a map or a sketch, you can decide which of standard constraints you take 

and you may introduce new symbols into it. To correctly use this pictorial representation, we 

need additional information about the projective function that was presupposed by the drawer. 

Thus these pictorial representations are underdetermined. Especially for schematic maps and 

sketches, certain details are often irrelevant for interpretation of the represented reality. 

Sometimes, the same facts can be expressed both through a language and through a sketch. 

Descriptions through a sketch often have the property that the whole structure can be viewed 

at a glance. However, they often need verbal explanation how to read objects on them. 
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Pictorial and verbal representations have their own advantages. Therefore, sophisticated 

speakers tend to use both representations in a talk.  

 

9  Conclusions 

A formal theory for pictorial representations has been presented based on a merelogical 

language. It was shown that a semantics of pictorial representations can be satisfactory 

characterized within the Extended Natural Representation Language (ENRL). By using this 

theory, combination of information from pictorial representations and information from 

verbal expressions could be properly described. The relation between representing and 

represented layers has been clarified. Furthermore, combination of pictorial representations is 

closely analyzed and its result is applied to analysis of aspect maps. ENRL is proposed from a 

theoretical interest. However, the idea proposed in this paper might be used for 

implementation. When ENRL is fully implemented, it can be used as an information system 

that can combine symbolical and spatial knowledge; it will be a system that can deal with 

verbal and pictorial inputs and outputs.  

 

Appendix 

In this appendix, I will present axioms of NRL, which are defined in Nakayama (1999). 

NRL is a theory in two-sorted logic with mereological objects and numbers. 

 

(MA1)  Axioms for Boolean algebra (minimum: φ,  maximum: U). 

(MD1)  u⊂v ≡ u∪v = v. 

(MD2)  u⊂p v ≡ u⊂v ∧ u≠φ. 

(MD3)  uOv ≡ u∩v≠φ.  

(MD4)  ∀u ((λv[q(v)])(u) ≡ q(u)). 

(MA2)  ∃u q(u) →∃v (q(v) ∧∀u (q(u) → u⊂p v)). 

(MD5)  v = sum(u)[q(u)] ≡  

((q(v) ∧ ∀u (q(u) → u⊂p v)) ∨ (∀u ¬q(u) ∧ v =φ)). 

(MA3)  For all Skolem function symbols dk: dk(u∪v) = dk(u)∪dk(v). 

 

From this axiom system it follows that the part-whole relation ⊂p is a partial ordering 

excluding the nothing: 

∀u (u≠φ → u⊂p u) ∧ ∀u∀v∀w (u⊂p v ∧ v⊂p w → u⊂p w) ∧  

∀u∀v (u⊂p v ∧ v⊂p u → u = v). 
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A sortal predicate F is characterized as follows. It provides the basis for count. 

(SA1)  ¬F(φ). 

(SA2)  F(u) ∧ F(v) → F(u∪v). 

(SA3)  F(u) ∧ F(u∪v) ∧ v≠φ∧ u∩v=φ → F(v). 

(SD1)  u⊂F v ≡ F(u) ∧ F(v) ∧ u⊂v. 

(SD2)  atomF (u) ≡ F(u) ∧ ∀v (v⊂u ∧ v≠u → ¬F(v)). 

(SD3)  uεF v ≡ atomF (u) ∧ u⊂F v. 

(SA4)  F(u) →∃v (vεF u). 

(SD4)  v = sumF (u)[q(u)] ≡  

((F(u) ∧ q(v) ∧ ∀u (F(u) ∧ q(u) → u⊂F v)) ∨  

(∀u (F(u) → ¬q(u)) ∧ v=φ)). 

 

The cardinality of physical objects and events is recursively defined, where F is a sortal 

predicate: 

(CD1) cdF(u) = 1 ≡ atomF(u). 

(CD2) (cdF(v) = 1 ∧ u∩v =φ) → (cdF(u) = n ≡ cdF(u∪v) = n+1). 
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