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Abstract. In this paper, I propose a new version of probabilistic dy-
namic epistemic logic (GIPDEL) that is based on general imaging, and
sketch the proof of soundness and completeness of this logic. The Monty
Hall dilemma is a common topic in probabilistic dynamic epistemic logic.
Using product-update-rule-based probabilistic dynamic epistemic logic
(PUPDEL), Kooi ([7]) supported the answer that I should switch my
choice. However, it is acknowledged that this answer is counterintuitive.
Using GIPDEL, I can support the answer that I do not have to switch
my choice. Intuition would suggest this answer. Moreover, GIPDEL can
give a plausible answer to a modified version of the Monty Hall dilemma
to which PUPDEL gives an extremely counterintuitive answer.

1 Introduction

Epistemic logic is the logic of knowledge. Dynamic epistemic logic is an exten-
sion of epistemic logic that can be used to reason about knowledge changes.
Kooi combined probability with dynamic epistemic logic.1 Because this logic is
based on product update rule, I call it product-update-rule-based probabilistic
dynamic epistemic logic (PUPDEL). The Monty Hall dilemma is an open problem
which is well-known among linguists, philosophers, psychologists, and logicians.
This dilemma has the same structure as the problem of three prisoners. Nowa-
days this dilemma is a common topic in probabilistic dynamic epistemic logic. In
[7], using PUPDEL, Kooi supported the answer that I should switch my choice.
However, it is acknowledged that this answer is counterintuitive.2 Imaging is a
method of changing probability functions Lewis proposed in [9]. Gärdenfors gen-
eralised this method in [3]. In this paper, I propose a new version of probabilistic
dynamic epistemic logic that is based on general imaging and sketch the proof of
? This is a preprint of a paper whose final version will appear in Washio, T. et al.

(eds.), New Frontiers in Artificial Intelligence: Joint JSAI 2006 Workshop Post-
Proceedings, Springer-Verlag, 2007. The copyright of this paper is transferred to
Springer-Verlag. This paper will be available at http://www.springerlink.com.

1 [7].
2 For the view that this answer is counterintuitive, refer to [5].



soundness and completeness of this logic. I call this logic general-imaging-based
probabilistic dynamic epistemic logic (GIPDEL). Using GIPDEL, I can support
the answer that I do not have to switch my choice. Intuition would suggest this
answer. Moreover, GIPDEL can give a plausible answer to a modified version of
the Monty Hall dilemma to which PUPDEL gives an extremely counterintuitive
answer.

2 Probabilistic Epistemic Logic PEL

2.1 Language

Fagin and Halpern gave the language of PEL LPEL.3

Definition 1. LPEL is defined in terms of a countable set S of sentential vari-
ables, a finite set A of agents, an epistemic operator Ka and a probability func-
tion symbol Pa. The well-formed formulae of LPEL are given by the following
rule:

φ ::= s | > | ¬φ | φ1 ∧ φ2 | Ka(φ) |
n∑

i=1

riPa(φi) ≥ r,

where s ∈ S, a ∈ A and r1, . . . , rn, r ∈ Q.
n∑

i=1

riPa(φi) is called a term of LPEL,

and
n∑

i=1

riPa(φi) ≥ r is called an a-probability formula of LPEL. Let ΦPEL denote

the set of all well-formed formulae of LPEL. Let Pa,LPEL
denote the set of all

a-probability formulae of LPEL and let TLPEL
denote the set of all terms of LPEL.

⊥,∨,→ and ↔ are introduced by the standard definitions. We use the usual
abbreviations for readability.

2.2 Semantics

Fagin and Halpern defined a multi-agent structured Kripke model for PEL as
follows:4

Definition 2. A multi-agent structured Kripke model for PEL MPEL is an (n+
3)-tuple (W,π,Ra1 , . . . , Ran ,P), where W is a set of possible worlds, π is a truth
assignment to each s ∈ S for each w ∈ W , Rai is an equivalence relation on
W ×W for i = 1, . . . , n, and P is a probability assignment that assigns to each
a ∈ A and each w ∈ W a probability space P(a,w) = (Wa,w,Fa,w, Pa,w), where
Wa,w ⊂ W is the sample space, Fa,w is a σ-field of subsets of Wa,w, and Pa,w

is a probability measure defined on Fa,w. We define Ra(w1) and Wa,w1(φ) as
follows:

Ra(w1) := {w2 : (w1, w2) ∈ Ra},
Wa,w1(φ) := {w2 ∈ Wa,w1 : (MPEL, w2) |= φ}.

3 [[1]: 343].
4 [[1]: 343, 346].
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Moreover, MPEL satisfies the following conditions:5

(CONS)
For all a ∈ A and w ∈ W ,
if P(a, w) = (Wa,w,Fa,w, Pa,w), then Wa,w ⊂ Ra(w),

(OBJ) P(a1, w) = P(a2, w) for all a1, a2 ∈ A and w ∈ W ,

(SDP)
For all a ∈ A and w1, w2 ∈ W ,
if w2 ∈ Ra(w1), then P(a, w1) = P(a, w2),

(UNIF)
For all a ∈ A and w1, w2 ∈ W
if P(a, w1) = (Wa,w1 ,Fa,w1 , Pa,w1) and w2 ∈ Wa,w1 ,
then P(a, w2) = P(a, w1),

(MEAS)
For all a ∈ A and w ∈ W and φ ∈ ΦLPEL ,
Wa,w(φ) ∈ Fa,w,

Let IMPEL denote the class of all structured Kripke models for PEL.

(CONS) postulates that the belief system of an agent who places positive
probability on an event he knows to be false is inconsistent. (OBJ) postulates
the objectivity of probability assignments. (SDP) postulates that the choice of
probability space is the same in all worlds the agent considers possible. (UNIF)
postulates that we can partition Ra(w) into subsets such that at every world in
a given subset, the probability space is the same. (MEAS) postulates that all
well-formed formulae define measurable sets.

Fagin and Halpern gave the following truth definition.6

Definition 3. The notion of φ ∈ ΦLPEL
being true at w ∈ W in MPEL, in

symbols (MPEL, w) |= φ is inductively defined as follows:

(MPEL, w) |= s iff π(w)(s) = true,
(MPEL, w) |= φ1 ∧ φ2 iff (MPEL, w) |= φ1 and (MPEL, w) |= φ2,
(MPEL, w) |= ¬φ iff (MPEL, w) 6|= φ,
(MPEL, w1) |= Ka(φ) iff (MPEL, w2) |= φ for all w2 ∈ Ra(w1),

(MPEL, w) |=
n∑

i=1

riPa(φi) ≥ r iff

n∑
i=1

riPa,w(Wa,w(φi)) ≥ r.

If (MPEL, w) |= φ for all w ∈ W , we write M |= φ and say that φ is valid in
M. If φ is valid in all models in IMPEL, we write IMPEL |= φ and say that φ is
valid with respect to IMPEL.

We define the probability of the semantic value of φ ∈ ΦLPEL
as follows:

Definition 4.

Pa,w1(Wa,w1(φ)) :=





∑
w2∈Wa,w1 (φ)

Pa,w1({w2}) if `PEL φ 6↔ ⊥,

0 otherwise.

5 [[1]: 350–352].
6 [[1]: 343, 347].

3



2.3 Syntax

Fagin and Halpern gave the axiom system of PEL as follows:7

Definition 5.

• Axioms of PEL

(A1) All tautologies of classical sentential logic,
(A2) Ka(φ1 → φ2) → (Ka(φ1) → Ka(φ2)) (K),
(A3) Ka(φ) → φ (T),
(A4) Ka(φ) → KaKa(φ) (Positive Introspection),
(A5) ¬Ka(φ) → Ka¬Ka(φ) (Negative Introspection),
(A6) Pa(φ) ≥ 0 (Nonnegativity),
(A7) Pa(>) = 1 (Normalisation),
(A8) Pa(φ1 ∧ φ2) + Pa(φ1 ∧ ¬φ2) = Pa(φ1) (Additivity),

(A9)
(

n∑
i=1

riPa(φi) ≥ r) ↔ (

n∑
i=1

riPa(φi) + 0Pa(φn+1) ≥ r)

(Adding and Deleting 0 Terms),

(A10)
(

n∑
i=1

riPa(φi) ≥ r) → (

n∑
i=1

rjiPa(φji) ≥ r)

if j1, . . . , jn is a permutation of 1, . . . , n (Permutation),

(A11)
(

n∑
i=1

riPa(φi) ≥ r) ∧ (

n∑
i=1

r′iPa(φi) ≥ r′) →
n∑

i=1

(ri + r′i)Pa(φi) ≥ (r + r′)

(Addition of Coefficients),

(A12)
(

n∑
i=1

riPa(φi) ≥ r) ↔ (

n∑
i=1

r′riPa(φi) ≥ r′r)

if r′ > 0 (Multiplication of Nonzero Coefficients),

(A13) (t ≥ r) ∨ (t ≤ r) if t ∈ TLPEL (Dichotomy),
(A14) (t ≥ r1) → (t > r2) if t ∈ TLPEL and r1 > r2 (Monotonicity),

(A15) Ka(φ) → (Pa(φ) = 1) (Correspondent to CONS),

(A16) (

n∑
i=1

riPa(φi) ≥ r) → (

n∑
i=1

rjiPb(φji) ≥ r) (Correspondent to OBJ),

(A17)
φ1 → (Pa(φ1) = 1) if φ1 ∈ Pa,LPEL or φ1 is ¬φ2 such that φ2 ∈ Pa,LPEL

(Correspondent to UNIF),

(A18)
φ1 → Ka(φ1) if φ1 ∈ Pa,LPEL or φ1 is ¬φ2 such that φ2 ∈ Pa,LPEL

(Correspondent to SDP),

• Inference Rules of PEL

(R1)
φ1 φ1 → φ2

φ2
(Modus Ponens),

(R2)
φ

Ka(φ)
(Generalisation),

(R3)
φ1 ↔ φ2

Pa(φ1) = Pa(φ2)
(Distributivity).

7 [[1]: 344, 353, 357].
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If φ ∈ ΦPEL is provable by (R1),(R2) or (R3) from (A1),(A2),(A3),(A4),(A5),(A6),
(A7),(A8),(A9),(A10),(A11),(A12),(A13),(A14),(A15),(A16),(A17) or (A18),
we write `PEL φ. The subsystem consisting of (A1),(A2),(A3),(A4),(A5),(R1)
and (R2) is called S5.

2.4 Soundness and Completeness

We can prove the soundness theorem of PEL in the usual way.

Theorem 1. (Soundness)
If `PEL φ, then IMPEL |= φ.

Fagin and Halpern proved the completeness theorem of PEL.8

Theorem 2. (Completeness)
If IMPEL |= φ, then `PEL φ.

3 Product-Update-Rule-Based Probabilistic Dynamic
Epistemic Logic PUPDEL

3.1 Language

Kooi gave the language of PUPDEL LPUPDEL.9

Definition 6. LPUPDEL is defined in terms of a countable set S of sentential
variables, a finite set A of agents, an epistemic operator Ka, a probability func-
tion symbol Pa and an update operator [ ]. The well-formed formulae of LPUPDEL

are given by the following rule:

φ ::= s | > | ¬φ | φ1 ∧ φ2 | Ka(φ) |
n∑

i=1

riPa(φi) ≥ r | [φ1]φ2,

where s ∈ S, a ∈ A and r1, . . . , rn, r ∈ Q. [φ1]φ2 is interpreted as “φ2 is the
case after everyone simultaneously and commonly learns that φ1 is the case.”
Let ΦLPUPDEL

denote the set of all well-formed formulae of LPUPDEL. Let Pa,LPUPDEL

denote the set of all a-probability formulae of LPUPDEL and let TLPUPDEL
denote

the set of all terms of LPUPDEL.

3.2 Semantics

Based on Definition 2 and [[7]: 388] , we define an updated multi-agent structured
Kripke model for PUPDEL as follows:

8 [[1]: 357–359].
9 [[7]: 387].
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Definition 7. When a multi-agent structured Kripke model MPUPDEL :=
(W,π, Ra1 , . . . , Ran

,P) and φ1 ∈ ΦLPUPDEL
are given, an updated multi-agent

structured Kripke model for PUPDEL Mφ1,PUPDEL is an (n + 3)-tuple
(Wφ1 , πφ1 , Ra1,φ1 , . . . , Ran,φ1 ,Pφ1), where

Wφ1 = W,
πφ1 = π,
Ra1,φ1 = {(w1, w2) ∈ Ra1 : (MPUPDEL, w2) |= φ1},

...
Ran,φ1 = {(w1, w2) ∈ Ran : (MPUPDEL, w2) |= φ1},
Pφ1 := (Wa,w1,φ1 ,Fa,w1,φ1 , Pa,w1,φ1),where

Wa,w1,φ1 :=

{
Wa,w1 if Pa,w1(Wa,w1(φ1)) = 0,

{w2 ∈ Wa,w1 : (MPUPDEL, w2) |= φ1} otherwise,

Fa,w1,φ1 is a σ-field of subsets of Wa,w1,φ1 ,

Pa,w1,φ1(Wa,w1,φ1(φ2)) :=

{
Pa,w1(Wa,w1(φ2)) if Pa,w1(Wa,w1(φ1)) = 0,

Pa,w1(Wa,w1(φ1 ∧ φ2))

Pa,w1(Wa,w1(φ1))
otherwise,

Moreover, MPUPDEL and Mφ1,PUPDEL satisfies (CONS),(OBJ),(SDP),(UNIF)
and (MEAS). Let IMPUPDEL denote the class of all structured Kripke models for
PUPDEL.

Based on [[7]: 388], we give the following truth definition.

Definition 8. The notion of φ ∈ ΦLPUPDEL
being true at w ∈ W in MPUPDEL, in

symbols (MPUPDEL, w) |= φ is inductively defined as follows:

(MPUPDEL, w) |= s iff π(w)(s) = true,
(MPUPDEL, w) |= φ1 ∧ φ2 iff (MPUPDEL, w) |= φ1 and (MPUPDEL, w) |= φ2,
(MPUPDEL, w) |= ¬φ iff (MPUPDEL, w) 6|= φ,
(MPUPDEL, w1) |= Ka(φ) iff (MPUPDEL, w2) |= φ for all w2 ∈ Ra(w1),

(MPUPDEL, w) |=
n∑

i=1

riPa(φi) ≥ r iff

n∑
i=1

riPa,w(Wa,w(φi)) ≥ r,

(MPUPDEL, w) |= [φ1]φ2 iff (Mφ1,PUPDEL, w) |= φ2.

If (MPUPDEL, w) |= φ for all w ∈ W , we write MPUPDEL |= φ and say that φ is
valid in M. If φ is valid in all models in IMPUPDEL, we write IMPUPDEL |= φ and
say that φ is valid with respect to IMPUPDEL.

3.3 Syntax

Besides (A1),(A2),(A3),(A4),(A5),(A6),(A7),(A8),(A9),(A10),(A11),(A12),(A13),
(A14),(A15),(A16),(A17) and (A18), the axiom system of PUPDEL has the fol-
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lowing axioms based on [[7]: 395]:

(A19) [φ1](φ2 → φ3) → ([φ1](φ2) → [φ1](φ3)) (K),
(A20) ¬[φ1]φ2 ↔ [φ1]¬φ2 (Functionality),
(A21) s ↔ [φ]s (Atomic Permanence),
(A22) [φ1]Ka(φ2) ↔ Ka(φ1 → [φ1]φ2) (Knowledge Update),

(A23)

Pa(φ) > 0 →

(([φ]

n∑
i=1

riPa(φi) ≥ r) ↔ (

n∑
i=1

riPa(φ ∧ [φ]φi) ≥ rPa(φ)))

(Probability Update 1),

(A24)

Pa(φ) = 0 →

(([φ]

n∑
i=1

riPa(φi) ≥ r) ↔ (

n∑
i=1

riPa([φ]φi) ≥ r))

(Probability Update 2).

Besides (R1),(R2) and (R3), the axiom system of PUPDEL has the following
inference rule based on [[7]: 395]:

(R4)
φ2

[φ1]φ2
(Generalisation).

If φ ∈ ΦPUPDEL is provable by (R1),(R2),(R3) or (R4) from (A1),(A2),(A3),(A4),
(A5),(A6),(A7),(A8),(A9),(A10),(A11),(A12),(A13),(A14),(A15),(A16),(A17),
(A18),(A19),(A20),(A21),(A22),(A23) or (A24), we write `PUPDEL φ.

3.4 Monty Hall Dilemma

The Monty Hall dilemma is an open problem which is well-known among lin-
guists, philosophers, psychologists, and logicians. Nowadays this dilemma is a
common topic in probabilistic dynamic epistemic logic. Kooi gave an answer to
this dilemma in terms of PUPDEL. This dilemma is stated as follows:10

Example 1. Suppose you’re on a game show, and you’re given the choice of three
doors. Behind the door is a car, behind the others, goats. You pick a door, say
number 1, and the host (Monty Hall), who knows what’s behind the door, opens
another door, say number 3, which has a goat. He says to you, “Do you want to
pick door number 2?” Is it to your advantage to switch your choice of doors?

3.5 Semantic Analysis of Monty Hall Dilemma in Terms of PUPDEL

Assume thatMPUPDEL := (W,π, RI , RMH ,P) is given. Let W be {w1, w2, w3, w4}
where w1 is a world where there is a car behind the door 1 and MH opens the
door 2, w2 is a world where there is a car behind the door 1 and MH opens the
door 3, w3 is a world where there is a car behind the door 2 and MH opens the
door 3, and w4 is a world where there is a car behind the door 3 and MH opens
the door 2.
10 [[14]: 6].
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Because w1 ∈ RI(w2) for all w1, w2 ∈ W , from (SDP) we have

P(I, w1) = P(I, w2) = P(I, w3) = P(I, w4).

Then we have, for all w ∈ W ,

PI,w({w1}) = PI,w({w2}) =
1
6
, PI,w({w3}) = PI,w({w4}) =

1
3
.

Let φ3, ψ1 and ψ2 each denote the following sentence.

φ3 := MH opens the door 3,
ψ1 := there is a car behind the door 1,
ψ2 := there is a car behind the door 2.

Because

PI,w(WI,w(ψ1)) = PI,w({w1}) + PI,w({w2}) =
1
6

+
1
6

=
1
3
,

we have, for all w ∈ W ,

(MPUPDEL, w
′) |= PI(ψ1) = 1

3 for all w′ ∈ RI(w).

So we have
MPUPDEL |= KI(PI(ψ1) =

1
3
).

Moreover, because, for all w ∈ W ,

PI,w,φ3 (WI,w,φ3 (ψ1)) =
PI,w(WI,w(φ3 ∧ ψ1))

PI,w(WI,w(φ3))
=

PI,w({w2})
PI,w({w2}) + PI,w({w3})

=
1
6

1
6 + 1

3

=
1

3
,

PI,w,φ3 (WI,w,φ3 (ψ2)) =
PI,w(WI,w(φ3 ∧ ψ2))

PI,w(WI,w(φ3))
=

PI,w({w3})
PI,w({w2}) + PI,w({w3})

=
1
3

1
6 + 1

3

=
2

3
,

we have, for all w ∈ W ,

(Mφ3,PUPDEL, w
′) |= PI(ψ1) = 1

3 for all w′ ∈ RI,φ3(w),
(Mφ3,PUPDEL, w

′) |= PI(ψ2) = 2
3 for all w′ ∈ RI,φ3(w).

So we have the following results:

MPUPDEL |= [φ3]KI(PI(ψ1) =
1
3
), MPUPDEL |= [φ3]KI(PI(ψ2) =

2
3
).

Therefore I should switch my choice. However, Ichikawa comments that there
are overwhelmingly many examinees that support the answer that they do not
have to switch their choices.11 Isn’t there a method of representing the belief
change that supports this answer? There exists such a method. General imaging
is a prime candidate for this task. I will propose a new version of probabilistic
dynamic epistemic logic (GIPDEL) that is based on general imaging.
11 [[5]: 27].
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4 General-Imaging-Based Probabilistic Dynamic
Epistemic Logic GIPDEL

4.1 Language

I give the language of GIPDEL LGIPDEL.

Definition 9. LGIPDEL is defined in terms of a finite set S of sentential variables,
a finite set A of agents, an epistemic operator Ka, a characteristic function Gi,
a probability function symbol Pa and an update operator [ ]. The well-formed
formulae of LGIPDEL are given by the following rule:

φ ::= s | > | ¬φ | φ1 ∧ φ2 | Ka(φ) |
n∑

i=1

riPa(φi) ≥ r |
n∑

i=1

riGi(φ) = r | [φ1]φ2,

where s ∈ S, a ∈ A and r1, . . . , rn, r ∈ Q. Let ΦLGIPDEL
denote the set of all

well-formed formulae of LGIPDEL. Let Pa,LGIPDEL
denote the set of all a-probability

formulae of LGIPDEL and let TLGIPDEL
denote the set of all terms of LGIPDEL.

4.2 Semantics

We prepare some concepts for the definition of general imaging. Let w2 ¹w1 w3

denote that w2 ∈ W is at least similar to w1 ∈ W as w3 ∈ W is. Let w2 ≺w1 w3

denote that w2 ∈ W is more similar to w1 ∈ W than w3 ∈ W is. The comparative
similarity system is defined as follows:12

Definition 10. We posit an assignment of ¹w and Ra(w) to w ∈ W . Let us call
such an assignment a comparative similarity system iff, for each w1, w2, w3, w4 ∈
W , the following six conditions hold.

1. ¹w1 is transitive; that is, if w2 ¹w1 w3 and w3 ¹w1 w4, then w2 ¹w1 w4.

2. ¹w1 is strongly connected; that is, for any w2 and w3, w2 ¹w1 w3 or w3 ¹w1 w2.

3. w1 is self-accessible; that is, w1 ∈ Ra(w1).

4. w1 is strictly ¹w1 -minimal; that is, if any w2 different from w1, w1 ≺w1 w2.

5. Inaccessible worlds are strictly ¹w1 -maximal; that is, if w3 /∈ Ra(w1), then for any
w2, w2 ¹w1 w3.

6. Accessible worlds are more similar to w1 than inaccessible worlds; if w2 ∈ Ra(w1)
and w3 /∈ Ra(w1), w2 ≺w1 w3.

Imaging is a method of changing probability functions Lewis proposed in [9]. It
produces minimal disturbance in the following sense:

Imaging P on A gives a minimal revision in this sense: unlike all other
revisions of P to make A certain, it involves no gratuitous movement of
probability from worlds to dissimilar worlds.13

12 This definition is based on [[8]: 48–49].
13 [[9]: 148].
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In order to define imaging, it is necessary to assume that, in a comparative
similarity system, for any w ∈ W , there is a unique w′ ∈ W that is the most
similar to w among the worlds where φ is true. General imaging is a version of
imaging Gärdenfors proposed in [3]. In order to define general imaging, we have
only to assume that, in a comparative similarity system, for any w ∈ W , there
is at least one world that is the most similar to w among the worlds where φ is
true. Let Ww

φ denote the set of all worlds that are the most similar to w among
the worlds where φ is true. We define gW

w1
φ

: W −→ IR as follows:

Definition 11.

gW
w1
φ

(w2) :=

{ 1

|W w1
φ | if w2 ∈ W w1

φ ,

0 otherwise,
where

∑

w2∈W
w1
φ

gW
w1
φ

(w2) = 1.

By means of Definition 4 and Definition 11, we define general imaging as follows:
Definition 12.

P¯a,w1,φ1
(Wa,w1,φ1(φ2))

:=





∑
w3∈Wa,w1 (φ2)

∑
w2∈Wa,w1

(
gW

w2
a,w1,φ1

(w3) · Pa,w1({w2})
)

if `GIPDEL φ1 6↔ ⊥ 6↔ φ2,

0 if `GIPDEL φ1 6↔ ⊥ ↔ φ2,
1 if `GIPDEL φ1 ↔ ⊥.

We define an updated multi-agent structured Kripke model for GIPDEL as fol-
lows:

Definition 13. When a multi-agent structured Kripke model MGIPDEL := (W,¹
, π,Ra1 , . . . , Ran , P̃), where W is a finite set of possible worlds and P̃ is an
extended probability assignment that assigns to each a ∈ A and each w ∈ W
an extended probability space P̃(a,w) = (Wa,w,Fa,w, 1, 0, Pa,w), where Fa,w is
a field of subsets of Wa,w, and φ1 ∈ ΦLGIPDEL

are given, an updated multi-agent
structured Kripke model for GIPDEL Mφ1,GIPDEL is an (n + 4)-tuple (Wφ1 ,¹φ1

, πφ1 , Ra1,φ1 , . . . , Ran,φ1 , P̃φ1), where

Wφ1 = W,
¹φ1=¹ (defined by Definition 10),
πφ1 = π,
Ra1,φ1 = {(w1, w2) ∈ Ra1 : (MGIPDEL, w2) |= φ1},

...
Ran,φ1 = {(w1, w2) ∈ Ran : (MGIPDEL, w2) |= φ1},
P̃φ1 := (Wa,w1,φ1 ,Fa,w1,φ1 , gW

w2
a,w1,φ1

, Pa,w1,φ1),where

Wa,w1,φ1 :=

{
Wa,w1 if Pa,w1(Wa,w1(φ1)) = 0,

{w2 ∈ Wa,w1 : (MGIPDEL, w2) |= φ1} otherwise,

Fa,w1,φ1 is a field of subsets of Wa,w1,φ1 ,
gW

w2
a,w1,φ1

was defined by Definition 11,

Pa,w1,φ1(Wa,w1,φ1(φ2)) :={
Pa,w1(Wa,w1(φ2)) if Pa,w1(Wa,w1(φ1)) = 0,

P¯a,w1,φ1
(Wa,w1,φ1(φ2)) (defined by Definition 12) otherwise,
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Moreover, MGIPDEL and Mφ1,GIPDEL satisfies (CONS),(OBJ),(SDP),(UNIF)
and (MEAS). Let IMGIPDEL denote the class of all structured Kripke models for
GIPDEL.

I give the following truth definition.
Definition 14. The notion of φ ∈ ΦLGIPDEL

being true at w ∈ W in MGIPDEL, in
symbols (MGIPDEL, w) |= φ is inductively defined as follows:

(MGIPDEL, w) |= s iff π(w)(s) = true,
(MGIPDEL, w) |= φ1 ∧ φ2 iff (MGIPDEL, w) |= φ1 and (MGIPDEL, w) |= φ2,
(MGIPDEL, w) |= ¬φ iff (MGIPDEL, w) 6|= φ,
(MGIPDEL, w1) |= Ka(φ) iff (MGIPDEL, w2) |= φ for all w2 ∈ Ra(w1),

(MGIPDEL, w) |=
2n∑
i=1

riGi(φ) = r iff

2n∑
i=1

ri ·
{

1 if (MGIPDEL, wi) |= φ
0 otherwise

}
= r,

(where S := {s1, . . . , sn} and (MGIPDEL, w1) |= s1& . . . &sn and (MGIPDEL, w2) |= ¬s1& . . . &sn and
. . . and (MGIPDEL, w2n−1) |= ¬s1& . . .¬sn−1&sn and (MGIPDEL, w2n ) |= ¬s1& . . . &¬sn−1&¬sn,)

(MGIPDEL, w) |=
n∑

i=1

riPa(φi) ≥ r iff

n∑
i=1

riPa,w(Wa,w(φi)) ≥ r,

(MGIPDEL, w) |= [φ1]φ2 iff (Mφ1,GIPDEL, w) |= φ2.

If (MGIPDEL, w) |= φ for all w ∈ W , we write MGIPDEL |= φ and say that φ is
valid in M. If φ is valid in all models in IMGIPDEL, we write IMGIPDEL |= φ and
say that φ is valid with respect to IMGIPDEL.

4.3 Syntax

The axiom system of GIPDEL is the same as that of PUPDEL, except that the
former has the following axioms and inference rule, instead of (A23) and (A24).

(A25)
(

n∑
i=1

riGi(φ) = r) ↔ (

n∑
i=1

riGi(φ) + 0Gn+1(φ) = r)

(Adding and Deleting 0 Terms),

(A26)
(

n∑
i=1

riGi(φ) = r) → (

n∑
i=1

rjiGji(φ) = r)

if j1, . . . , jn is a permutation of 1, . . . , n (Permutation),

(A27)
(

n∑
i=1

riGi(φ) = r) ∧ (

n∑
i=1

r′iGi(φ) = r′) →
n∑

i=1

(ri + r′i)Gi(φ) = (r + r′)

(Addition of Coefficients),

(A28)
(

n∑
i=1

riGi(φ) = r) ↔ (

n∑
i=1

r′riGi(φ) = r′r)

if r′ > 0 (Multiplication of Nonzero Coefficients),

(A29)
([φ1]

n∑
i=1

riGi(φ2) = r) ↔ (

n∑
i=1

riGi([φ1]φ2) = r)

(Characteristic Function Update),

(A30)
([φ]

n∑
i=1

riPa(φi) ≥ r) ↔ (

n∑
i=1

riPa([φ]φi) ≥ r)

(Probability Update),

11



(A31)

(Pa(s1& . . . &sn) = r1&Pa(¬s1& . . . &sn) = r2& . . .
&Pa(¬s1& . . . &¬sn−1&sn) = r2n−1&Pa(¬s1& . . . &¬sn−1&¬sn) = r2n

&Pa(φ1) =

2n∑
i=1

riGi(φ1)) → ([φ2]Pa(φ1) =

2n∑
i=1

riGi(φ1)),

where S := {s1, . . . , sn} (Linearity of Probability Update),

(R5)
φ1 ↔ φ2

Gi(φ1) = Gi(φ2)
(Distributivity).

If φ ∈ ΦGIPDEL is provable by (R1),(R2),(R3),(R4) or (R5) from (A1),(A2),(A3),
(A4),(A5),(A6),(A7),(A8),(A9),(A10),(A11),(A12),(A13),(A14),(A15),(A16),
(A17),(A18),(A19),(A20),(A21),(A22),(A25),(A26),(A27),(A28),(A29),(A30) or
(A31), we write `GIPDEL φ.

4.4 Soundness and Completeness

We can prove the soundness theorem of GIPDEL in the usual way.

Theorem 3. (Soundness)
If `GIPDEL φ, then IMGIPDEL |= φ.

In order to prove completeness of GIPDEL, we give a translation function τ :
LGIPDEL → LPEL. Because completeness of PEL is proved, it suffices to show
that every well-formed formula is equivalent to its translation in GIPDEL. This
method is usual in the literature of dynamic epistemic logics.14

Definition 15. A translation function τ : LGIPDEL → LPEL is defined as follows:

1. τ(s) = s,
2. τ(>) = >,
3. τ(¬φ) = ¬τ(φ),
4. τ(φ1 ∧ φ1) = τ(φ1) ∧ τ(φ2),
5. τ(Ka(φ)) = Ka(τ(φ)),

6. τ(

n∑
i=1

riGi(φ) = r) = (

n∑
i=1

riGi(τ(φ)) = r),

7. τ(

n∑
i=1

riPa(φi) ≥ r) = (

n∑
i=1

riPa(τ(φi)) ≥ r),

8. τ([φ]s) = s,
9. τ([φ1]¬φ2) = ¬τ([φ1]φ2),

10. τ([φ1](φ2 ∧ φ2)) = τ([φ1]φ2) ∧ τ([φ1]φ3),
11. τ([φ1]Ka(φ2)) = Ka(τ(φ1) → τ([φ1]φ2)),

12. τ([φ1]

n∑
i=1

riGi(φ2) = r) = (

n∑
i=1

riGi(τ([φ1]φ2)) = r),

13. τ([φ]

n∑
i=1

riPa(φi) ≥ r) = (

n∑
i=1

riPa(τ([φ]φi)) ≥ r).

We can prove the following lemma.
14 As for this method, refer to [[4]: 95-97], [[6]: 110-113] and [[7]: 396-397].
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Lemma 1. For every φ ∈ ΦGIPDEL, `GIPDEL τ(φ) ↔ φ.

From Theorem 2 and Lemma 1, we can prove the completeness theorem of
GIPDEL.

Theorem 4. (Completeness)
If IMGIPDEL |= φ, then `GIPDEL φ.

4.5 Semantic Analysis of Monty Hall Dilemma in Terms of GIPDEL

Assume that MGIPDEL := (W,¹, π, RI , RMH , P̃) is given. Then ¹ enables us to
assume that w2 is the most similar to w1 among the worlds where φ3 is true, and
to assume that w2 and w3 are the most similar to w4 among the worlds where
φ3 is true.

Because, for all w ∈ W ,

PI,w,φ3(WI,w,φ3(ψ1)) = P¯I,w,φ3
(WI,w,φ3(ψ1)) = 1

6 + 1
6 + 1

2 · 1
3 = 1

2 ,

PI,w,φ3(WI,w,φ3(ψ2)) = P¯I,w,φ3
(WI,w,φ3(ψ2)) = 1

3 + 1
2 · 1

3 = 1
2 ,

we have, for all w ∈ W ,

(Mφ3,GIPDEL, w
′) |= PI(ψ1) = 1

2 for all w′ ∈ RI,φ3(w),
(Mφ3,GIPDEL, w

′) |= PI(ψ2) = 1
2 for all w′ ∈ RI,φ3(w).

So we have the following results:

MGIPDEL |= [φ3]KI(PI(ψ1) =
1
2
), MGIPDEL |= [φ3]KI(PI(ψ2) =

1
2
).

Therefore I do not have to switch my choice. In this way, general imaging can
represent the belief change that supports this answer.

5 Semantic Analyses of Modified Version of Monty Hall
Dilemma

5.1 Modified Version of Monty Hall Dilemma

Ichikawa presented a modified version of the problem of three prisoners.15 Like-
wise, we can state a modified version of the Monty Hall dilemma as follows:

Example 2. Suppose you’re on a game show, and you’re given the choice of three
doors. Behind the door is a car, behind the others, goats. Somehow, you know
the probability of there being a car behind the door 1 is 1

4 , the probability of
there being one behind the door 2 is 1

4 and the probability of there being one
behind the door 3 is 1

2 . You only tentatively pick a door, say number 1, and the
host (Monty Hall), who knows what’s behind the door, opens another door, say
number 2, which has a goat. Then what do you think the probability of there
being a car behind the door 1?
15 [[5]: 29].
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5.2 Semantic Analysis in Terms of PUPDEL

Assume that MPUPDEL := (W,π, RI , RMH ,P) is given. Then we have, for all
w ∈ W ,

PI,w({w1}) = PI,w({w2}) =
1
8
, PI,w({w3}) =

1
4
, PI,w({w4}) =

1
2
.

Let φ2 denote the sentence that MH opens the door 2.
Because, for all w ∈ W ,

PI,w,φ2 (WI,w,φ2 (ψ1)) =
PI,w(WI,w(φ2 ∧ ψ1))

PI,w(WI,w(φ2))
=

PI,w({w1})
PI,w({w1}) + PI,w({w4})

=
1
8

1
8 + 1

2

=
1

5
,

we have, for all w ∈ W ,

(Mφ2,PUPDEL, w
′) |= PI(ψ1) = 1

5 for all w′ ∈ RI,φ2(w).

So we have the following result:

MPUPDEL |= [φ2]KI(PI(ψ1) =
1
5
).

However, Ichikawa comments that there is no reason to believe that the proba-
bility that there is a car behind the door 1 decreases even though there may be
reason to believe that the probability remains.16

5.3 Semantic Analysis in Terms of GIPDEL

Assume that MGIPDEL := (W,¹, π, RI , RMH , P̃) is given. Then ¹ enables us to
assume that w1 is the most similar to w2 among the worlds where φ2 is true, and
to assume that w1 and w4 are the most similar to w3 among the worlds where
φ2 is true.

Because, for all w ∈ W ,

PI,w,φ2(WI,w,φ2(ψ1)) = P¯I,w,φ2
(WI,w,φ2(ψ1)) =

1
8

+
1
8

+
1
2
· 1
4

=
3
8
,

we have, for all w ∈ W ,

(Mφ2,GIPDEL, w
′) |= PI(ψ1) = 3

8 for all w′ ∈ RI,φ2(w).

So we have the following result:

MGIPDEL |= [φ2]KI(PI(ψ1) =
3
8
).

GIPDEL can give a plausible answer also in Example 2.
16 [[5]: 30].
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6 Concluding Remarks

Kooi says:

The Monty Hall dilemma is a puzzle for which intuitions fail many peo-
ple. The best way to show that the counterintuitive results are correct
is to use some formal method. PDEL provides such a method.17

I do not agree with him. The Monty Hall dilemma does not illustrate that intu-
itive reasoning is sometimes incoherent with mathematical rules. But it shows
that there are probability changes that cannot be represented in PUPDEL.18 In
this paper, I proposed GIPDEL and showed that these probability changes can
be represented in GIPDEL. The modified version of this dilemma supported this
opinion.
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