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The aim of Field [1] is to defend nominalism which is a doctrine that there are no
such abstract (mathematical) objects as numbers, functions, and sets. So he does
not admit quantification over such mathematical objects. Because mathematical
objects do not exist, mathematical theories are no bodies of true formulae. For
Field, the one and only serious argument for the existence of mathematical
objects is the Quine-Putnam Indispensability Argument: we cannot carry out
inferences about the physical world without resort to physical theories that
postulate mathematical objects. Field tries to undercut this argument and
regards mathematical theories not as bodies of true formulae but as instruments
for deriving nominalistically stated conclusions from nominalistically stated
premises. The use of mathematical theories is considered to be good when they
satisfy a kind of consistency condition that is the condition of being conservative
in the sense that any nominalistically stated conclusions derivable with the
help of mathematical theories are already derivable from the nominalistically
stated premises only. Their usefulness consists in shortening our derivations.
Abstract (mathematical) objects are useful because we can use them to formulate
abstract counterparts of concrete (nominalistic) statements. Field considers the
application of mathematics from a measurement-theoretic point of view. The
representation theorem proves the existence of a structure-preserving mapping
f from a qualitative (comparative) structure to a quantitative (numerical) structure.
On the other hand, the uniqueness theorem specifies the transformation up
to which f is unique. Field [1, pp.26–27] makes clear how f contributes to
nominalism as follows:

• First Step: We can use f to ascend from concrete (nominalistically stated)
premises to abstract counterparts.

• Second Step: By reasoning within a mathematical theory, we can prove
abstract counterparts of further concrete (nominalistic) statements.

• Third Step: We can use f again to descend to the concrete statements of
which they are abstract counterparts.
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• So, the concrete conclusions so reached would always be obtainable with-
out ascending to the abstract counterparts.

Field [1, ch.8] tries to nominalize Newtonian gravitational theory, which is
the heart of Field [1]. Field provides a joint axiom system (JAS) that has the
qualitative axioms for the representation and uniqueness theorems for the three
functions:

1. a spatio-temporal coordinate function φ,

2. a mass-density function ρ, and

3. a gravitational potential function ψ.

Then Field shows that statements of Newtonian gravitational theory are ex-
pressible by using JAS. The qualitative axiom subsystem of JAS for the repre-
sentation and uniqueness theorems for φ that is based on Szczerba and Tarski
[4]‘s axiomatization of affine geometry is first-order axiomatizable. Both the qual-
itative axiom subsystem of JAS for the representation and uniqueness theorems
for ρ and that forψ are for difference measurement, from a measurement theoretic
point of view . According to Field [1, p.38], only one second-order axiom for
the representation theorem for difference measurement is the Dedekind com-
pleteness axiom that implies Archimedeanness: for any positive number x, no
matter how small, and for any number y, no matter how large, there exists
an integer n such that nx ≥ y. This axiom quantifies over non-empty sets of
points. Field [1, p.92] remarks on the following two respects in which he has
overstepped the bounds of first-order logic into second-order logic:

1. the complete logic of Goodmanian sums,

2. the binary quantifier “there are only finitely many”.

Then Field [1, pp.92–93] argues that we do not really need the latter in addition
to the former, for the former is sufficient to give us the cardinality compar-
isons and the representation theorems. Field [1, ch.9] tries to nominalize the
Dedekind completeness axiom by identifying a non-empty set of points with a
Goodmanian sum of points. From this viewpoint, we should rewrite the fourth
bullet item as follows:

• So, the concrete conclusions so reached would always be obtainable with-
out ascending to the abstract counterparts with the help of the complete
logic of Goodmanian sums.

This way of identification may be worth studying, but requires many com-
plicated axioms including second-order ones [1, ch,9]. In this talk we would
like to investigate the possibility of first-order nominalism in terms of the fol-
lowing representation and uniqueness theorems: The aim of this talk is that,
in order to investigate the possibility of first-order nominalism, introducing
R′ := R ∪ {−∞,+∞}, we prove new non-standard representation and unique-
ness theorems for difference measurement without Archimedeanness, in other
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words, with only first-order axioms by making use of [2, 3]. As well as [2, 3],
our representation theorem does not guarantee the existence of such f that if
a ≻ b then f (a) > f (b) which can imply that if f (a) = f (b) then a ∼ b but guar-
antees the existence of such f that if f (a) > f (b) then a ≻ b which can imply
that if a ∼ b then f (a) = f (b). So, about equalities, our representation theorem
does not justify the Third Step above but justifies the First Step above. About in-
equalities, our representation theorem does not justify the First Step but justifies
the Third Step. This point can obtain the following interpretative support: On
the basis of Mundy [2, pp.388–389], where such qualitative relations as ≻ and
∼ are not observational (empirical) in the standard sense in measurement theory
but theoretical, we can argue as follows:

• about Equalities

– f (a) = f (b) simply means a failure to detect any actual difference,
which is no guarantee that finer observations will detect no differ-
ence. So f (a) = f (b) does not entail a ∼ b.

– a ∼ b means exact theoretical equivalence and hence equivalence
should hold for any measuring process. So a ∼ b entails f (a) = f (b).

• about Inequalities

– On the other hand, a ≻ b means a theoretical difference that may not
manifest itself in our observations, and hence not in our numerical
scale assignments. So a ≻ b does not entail f (a) > f (b).

– f (a) > f (b) means a detection of an actual difference, and the actual
difference will also be detectable by a finer observation. So f (a) > f (b)
entails a ≻ b.
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